State Wins to National Strategy

Advancing Newborn Screening Together

September 30, 2025

Supported by BioMarin Acadia, CSL Behring, Sanofi, Ultragenyx

What We'll Cover Today

- Florida Sunshine Genetics Act
- The Future of Newborn Screening
- Newborn Screening Wins & Losses
- Looking Ahead

NEWBORN SCREENING Florida Sunshine Genetics Act

Pradeep G. Bhide, Ph.D.

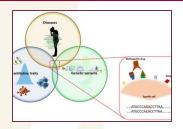
Director, Florida Institute for Pediatric Rare Diseases

David Ledbetter, Ph.D., FACMG

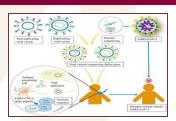
Senior Associate Director, Florida Institute for Pediatric Rare Diseases

FSU | FLORIDA STATE

Pradeep G. Bhide, Ph.D., Director David H. Ledbetter, Ph.D., FACMG., Senior Associate Director


FSU | FLORIDA INSTITUTE FOR PEDIATRIC RARE DISEASES

Our mission is to advance the diagnosis, treatment, and prevention of pediatric rare diseases through cutting-edge research, precision medicine, and clinical care, and position Florida to be the national leader in precision medicine


Research Programs

Rare Disease Research Program

Genetic Engineering

Viral Vector and Gene Editing Facility

Training Programs

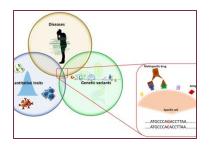
Graduate Program in Genetic Counseling

Precision Medicine

IPRD Pediatric Clinical Service

Clinical Diagnostics

CLIA-CAP Genomics Laboratory Facility

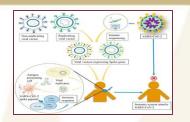

Sunshine Genetics

Newborn Whole Genome Sequencing

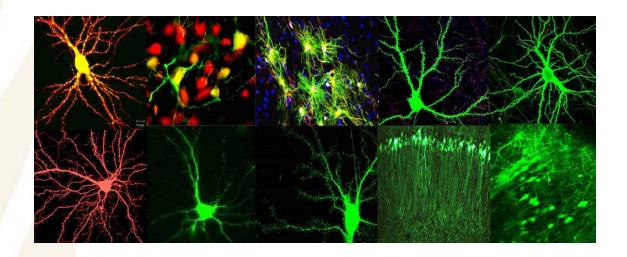
Rare Disease Research Grants Program

Program Goals

- Identify and support rare disease research groups across FSU campus
- Encourage collaboration
- Support pilot projects to advance research toward extramural funding
- Publications, Conference Presentations, IP



Master's Program in Genetic Counseling



- 1. Program approved by the University Board of Trustees on September 13, 2024
- 2. Efforts are underway to recruit a Program Director
- 3. Recruited a genetic counselor from UCLA (started August 14, 2025)
- 4. Rep. Anderson is planning legislation to provide **educational loan forgiveness** and **healthcare provider status** under Medicaid and commercial insurers (i.e., reimbursement for services) to **genetic counselors**

Viral Vector and Gene Editing Facility

A full-service facility specializing in the design, development, and production of viral vectors and gene editing tools. We support gene editing and gene therapy needs of academic, clinical, and industry partners across the nation.

CLIA-CAP Certified Genomics Diagnostics Facility

A Strategic Partnership with Quest Diagnostics

State-of-art genomics clinical diagnostic service at competitive rates and industry leading turnaround time

Pediatrics Clinical Service

- Multidisciplinary clinical care to children with undiagnosed diseases, complex medical problems, autism or other neurodevelopmental disorders (developmental delay, intellectual disability, epilepsy, cerebral palsy, motor speech disorders)
- A "genome-first" approach using diagnostic whole genome sequencing on first visit to shorten the "diagnostic odyssey" and initiate early intervention and triage to appropriate pediatric specialists
- Serve as a hub for patient recruitment into research studies

Sunshine Genetics Newborn WGS Pilot Program

- The Sunshine Genetics Act supports newborn whole genome sequencing
- Families can volunteer (full opt-in consent) to have their baby's genome sequenced and screened for ~250-600 conditions in addition to traditional NBS ~60 conditions.
- The goal is to identify potentially serious but treatable conditions early, so that care can begin before symptoms appear

Sunshine Genetics Newborn WGS Pilot Program

- A Board of Overseers representing Florida's Universities, Health Care Institutions and the Government.
- A Sunshine Genetics Consortium to execute the pilot program and promote collaboration among hospitals, universities, industry and genetic researchers. A Steering Committee of the consortium will be established to determine:
 - 1) Which genes/conditions to be screened for (range 250-600)
 - 2) When and how to recruit/consent patients (e.g., during pregnancy, at birth, pediatric well-baby visits)
 - 3) To develop standards for genome sequencing performance and quality metrics for central sequencing lab or multiple, distributed labs).

Sunshine Genetics Newborn WGS Pilot Program

- Develop a system for secure data storage and sharing, using only de-identified information for future research.
- Other considerations:
 - Close partnership with Florida DOH NBS Program and Lab to clearly educate patient-participants that this supplements traditional NBS and does not replace it.
 - Piggy-back in collaborative way to improve awareness of traditional NBS, leverage existing DBS collected for NBS, partner with NBS follow-up programs to expand capacity to return WGS positive results, provide genetic counseling and make appropriate medical referrals.

FSU | FLORIDA STATE

Thank you!

NEWBORN SCREENING The Future

Stephen Kingsmore, M.D., DSc

President/CEO, Rady Children's Institute for Genomic Medicine

How Whole Genome Sequencing (WGS) is Transforming the Field

Stephen Kingsmore MB, ChB, BAO, DSc, FRCPath

1st Rapid Diagnostic WGS (rWGS)

RESEARCH ARTICLE

Sci Transl Med 4, 154ra135 (2012):

DIAGNOSTICS

Rapid Whole-Genome Sequencing for Genetic Disease Diagnosis in Neonatal Intensive Care Units

Carol Jean Saunders, 1,2,3,4,5* Neil Andrew Miller, 1,2,4* Sarah Elizabeth Soden, 1,2,4* Darrell Lee Dinwiddie, 1,2,3,4,5* Aaron Noll, 1 Noor Abu Alnadi, 4 Nevene Andraws, 3 Melanie LeAnn Patterson, 1,3 Lisa Ann Krivohlavek, 1,3 Joel Fellis, 6 Sean Humphray, 6 Peter Saffrey, 6 Zoya Kingsbury, 6 Jacqueline Claire Weir, 6 Jason Betley, 6 Russell James Grocock, 6 Elliott Harrison Margulies, 6 Emily Gwendolyn Farrow, 1 Michael Artman, 2,4 Nicole Pauline Safina, 1,4 Joshua Erin Petrikin, 2,3 Kevin Peter Hall, 6 Stephen Francis Kingsmore 1,2,3,4,5†

- 7 years of development
- In 50 hours rWGS provided likely diagnoses in 4 of 5 critically ill newborns.

Obtain consent and blood sample

t0

Prepare sequencing library
Enter clinical findings into SSAGA

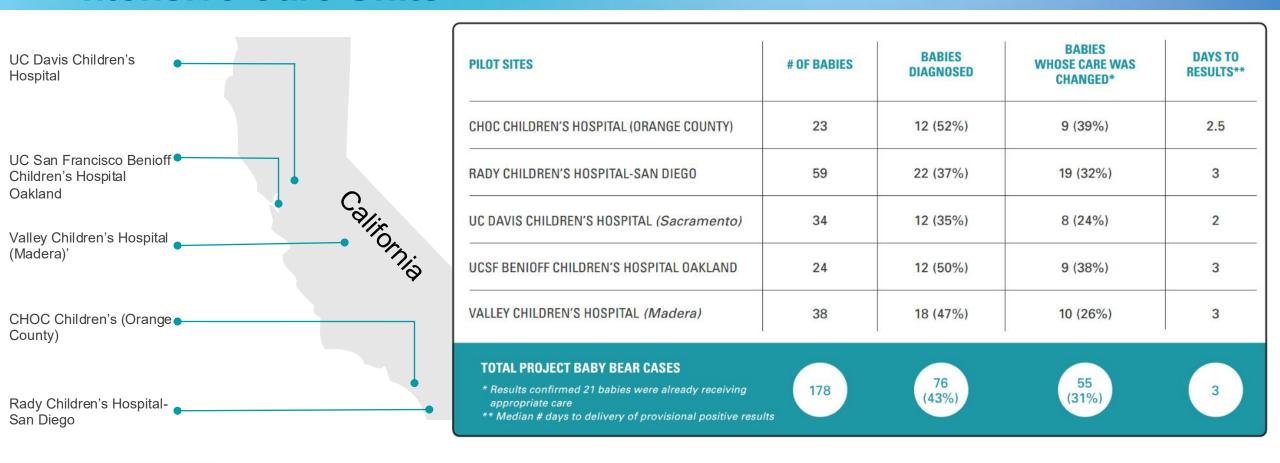
t5

HiSeq 2500 2 x 100 bp sequencing

CASAVA base calling RUNES variant annotation

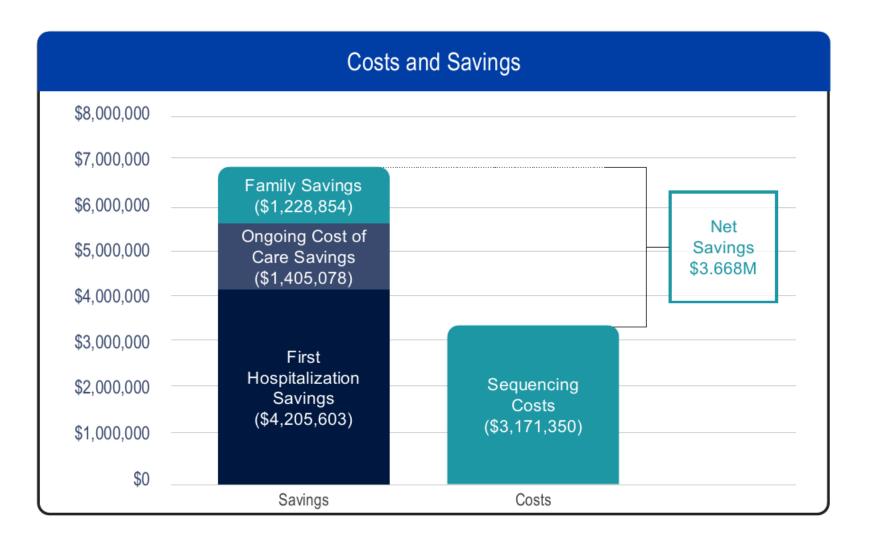
t49

SSAGA-delimited variant analysis and interpretation


t50

Verbal interim report of diagnosis pending CLIA confirmation

It took Implementation Pilot studies to achieve Medicaid coverage of rWGS in Neonatal Intensive Care Units



Medicaid: Federal-paid State-administered insurance plan that covers 55% of NICU patients

It took Cost Effectiveness studies to achieve Medicaid coverage of rWGS in Neonatal Intensive Care Units

~250,000 Medi-Cal covered infants born per year

2,500 infants receiving rWGS®

Effective change in treatment

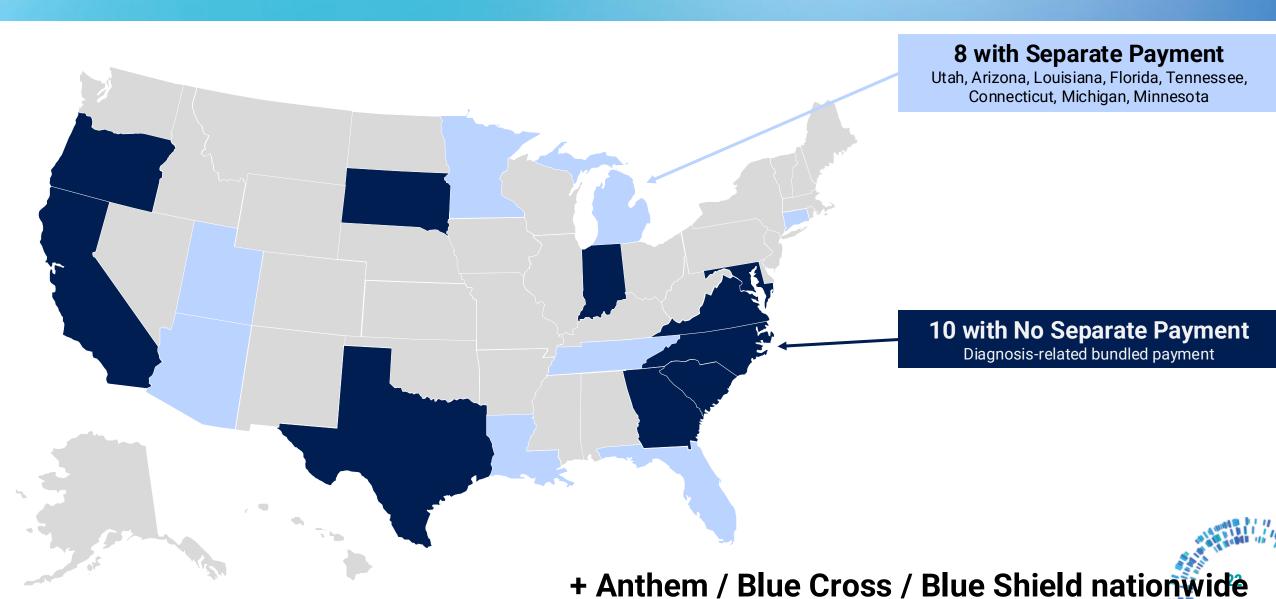
758.5

QALYS gained

Am J Hum Genet. 2021 108:1231-1238.

Evidence base for rWGS in 2024

- 37% diagnosis
- 26% change in management
- 18% change in outcome
- \$17,243 median net savings per test


Ref.	Year	Country	Number of probands	Dx rate	Net savings per proband
48	2018	USA	42	43%	\$18,741
68	2021	USA	184	40%	\$6,294
6	2022	USA	61	33%	\$11,286
85	2022	USA	38	45%	(\$1,436)
75	2022	USA	65	40%	\$100,440
86	2022	Australia	40	53%	\$17,243
77	2023	USA	89	39%	\$4,155
87	2025	USA	184	40%	\$22,396
78	2025	USA	400	49%	\$158,592
		40%	\$17,243		

npj Genomic Med. (2024) 9:17 (2024)

Ref.	Year	Country	Study	Test	Enrollment Criteria	Size	Dx	Δ Μχ	Δ Outcome	TAT (days)
7	2012	USA	Type Cases	URGS	NICU infants; Susp. genetic disease	4	Rate 75%	n.d.	n.d.	(uays)
44	2015	USA	Cohort	RGS	<4 months of age; Susp. actionable genetic disease	35	57%	31%	29%	23
45	2017	USA	Cohort	RES	<100 days old; Susp. genetic disease	63	51%	37%	19%	13
46	2017	Holland	Cohort	RGS	Infants; NICU, PICU; Susp. genetic disease	23	30%	22%	22%	12
47	2018	USA	RCT		<4 months of age; Susp. genetic disease	32	41%	31%	n.d.	13
48	2018	USA	Cohort	RGS	Infants; Susp. genetic disease	42	43%	31%	26%	23
49	2018	Aust	Cohort	RES	Acutely ill children with susp. genetic disease	40	53%	30%	8%	16
50	2018	UK	Cohort	RGS	Children; PICU and Cardiovascular ICU	24	42%	13%	n.d.	9
51	2019	USA	Cohort	RGS	4 months-18 years; PICU; Susp. genetic disease	38	48%	39%	8%	14
52	2019	UK	Cohort	RGS	Susp. genetic disease	195	21%	13%	n.d.	21
12	2019	USA	Cases	URGS	Infants; ICU; Susp. genetic disease	7	43%	43%	n.d.	0.8
53	2020	USA	Cohort	RES	<6 months old; ICU; hypotonia, seizures, metabolic, multiple congenital anomalies	50	58%	48%	n.d.	5
54	2019	Canada	Cohort	RES	NICU; infants; susp. genetic disease	25	72%	60%	n.d.	7.2
55	2019	Taiwan	Cohort	RES	PICU and other; children; susp. genetic disease	40	53%	43%	n.d.	6
56	2020	China	Cohort	RES	NICU & PICU; complex	130	48%	23%	n.d.	3.8
57	2020	USA	Cohort	RES	Critical illness; medical genetics selected	46	43%	52%	n.d.	9
58	2020	USA	Cohort	RES	PICU; < 6 years; new metabolic/neurologic disease	10	50%	30%	n.d.	9.8
59	2020	USA	Cohort	RES	ICU; infants	368	27%	n.d.	n.d.	n.d.
60	2020	China	Cohort	RES	Infants; ICU and inpatient	102	31%	27%	n.d.	11
61	2020	USA	Cohort	RES	Various	41	32%	n.d.	n.d.	7
62	2020	Aust	Implem	URES	<18 year; NICU and PICU	108	51%	44%	n.d.	3
63	2020	Poland	Cohort	RES	Infants; NICU, PICU; susp. genetic disease	18	83%	61%	n.d.	14
64	2020	China	Cohort	URES	Infants; NICU, PICU; susp. genetic disease	33	70%	30%	30%	1
33,65,	2019,	USA		RGS RES URGS	Infants; disease of unknown etiology; within 96	94 95	19%	24%	10%	11
66	2020		RCT		hours of admission		20%	20%	18%	11
	2024	1104				24	46%	63%	25%	4.6
68	2021	USA	Implem	URGS	Medicaid infants; unknown etiology; within 1 week o		40%	32%	n.d.	3
69	2021	China	Cohort	RES	Critically ill; 6 days - 15 years; susp. genetic disease	40	43%	31%	n.d.	5
70		Germany	Cohort	RES	NICU, PICU, infants; sup. Genetic disease	61	43%	11%	n.d.	60
71	2021	USA	RTDCT		<120 days old; ICU; susp. genetic disease	354	31%	25%	n.d.	15
43	2021	China	Crossover	RES RGS	Critically ill infants with conditions suggestive of gene	202 tically 202	20% hetero 37%	n.d. geneous 7%	n.d, disorders n.d.	20 7
72	2022	France	Cohort	RGS	NICU, PICU with probable genetic disease; urgent ne	37	57%	n.d.	n.d.	43
73	2022	UAE	Cohort	URGS	Infants in ICU with complex multisystem disease	5	60%	20%	20%	1.5
74	2022	USA	Implem	RES	NICU infants with susp. genetic disease	80	28%	18%	n.d.	13
75	2022	USA	Cohort	RGS	Children in ICU with disease of unknown etiology	65	40%	n.d.	n.d.	12
76	2022	France	Cohort	RES	Infants in ICU with susp. genetic disease	15	40%	53%	n.d.	16
77	2023	USA	Implem	RGS	NICU, PICU with disease of unknown etiology	89	39%	27%	n.d.	n.d.
67,78	2021, 2023	USA	Crossover	RGS, panel	NICU with disease of unknown etiology	400	49%	19%	n.d.	6
79	2023	USA	Cohort	RGS	Acutely ill inpatient infants; susp. genetic disease	188	35%	32%	n.d.	6
80	2023	Belgium	Cohort	URGS	NICU, PICU, neurologic inpatients with susp. genetic	21	57%	57%	n.d.	1
Weigh	ted Av	erage				3609	37%	26%	18%	

Current Medicaid Coverage of rWGS

Complex Coverage Policies for rWGS

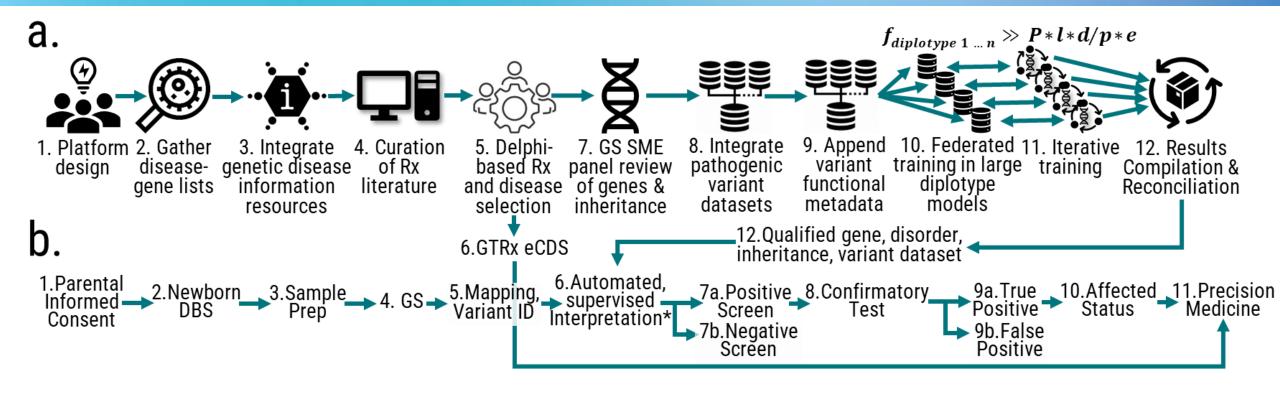
- 1. Sx suggest a genetic disease that cannot be Dx by standard work-up;
- 2. Sx suggest a broad, differential Dx that requires multiple genetic tests;
- 3. Timely Dx necessary to guide clinical decision making; and >1 of the following:
 - a. Multiple congenital anomalies,
 - b. Specific malformations suggest a genetic disease,
 - C. Laboratory test suggests a genetic disease,
 - d. Refractory or severe hypoglycemia,
 - e. Abnormal response to therapy,
 - f. Severe hypotonia,
 - g. Refractory seizures,
 - h. Brief Resolved Unexplained Event:
 - Laboratory test suggests inborn error of metabolism,
 - j. Test suggests channelopathy, arrhythmia, cardiomyopathy, myocarditis, or structural heart disease,
 - k. Family history of genetic disease related to symptoms/signs.

After 13 years, US Adoption of rWGS is ~4% of those in need

NICUs <u>not</u> yet using rWGS

100K US infants/year

Ineligible NICU infants with genetic diseases
100K/year


NICUs who do use rWGS... eligible infants not getting rWGS

50K infants/year

NICUs who do use rWGS - infants getting rWGS 10k infants/year

Re-engineering rWGS for BeginNGS NBSxWGS

Version 3 BeginNGS Platform 510 severe, early childhood diseases with effective therapies

Ref	Design	Seq Type	Size	Subjects	Disorders	Genes	Screen +ve	Sensitivity	Specificity	Clinical Utility				
8	Retro	WGS	1,696	Infants	n.d.	163	2.0%	94%	63%	n.d.				
9	Retro	WES	1,190	NB	48	78	n.d.	88%	98%	n.d.				
10	Pro	WES	106	NB	n.d.	466	n.d.	44%	n.d.	n.d.				
11	Pro	Panel	1,127	NB	n.d.	463	0.5%	n.d.	100%	n.d.				
12		10	. 1•											
13	•	19 studies												
14														
15	•	 48 – 6000 disorders 												
16	 Clinical utility examined in 6 studies: 1.6 – 9.9% 													
16		Ciin	ıcaı	utility e	examir	iea i	ท ๒ รน	Jaies:	1.6 -	9.9%				
17														
18		use	IN IC	CUs see	ems w	ortn	wniie							
18	Kelio	WES	000	Chilaren	n.u.	Z00	۷.170	II.U.	n.u.	n.u.				
19	Pro	Panel	29,601	NB	128	142	2.7%	82%	50%	n.d.				
20	Pro	Panel	10,220	NB	94	164	2.4%	n.d.	23%	n.d.				
21	Pro	WES	3,423	NB	542	601	11.4%	59%	44%	n.d.				
21	Retro	WGS	301	Adults	542	601	7.6%	n.d.	n.d.	n.d.				
22	Pro	WGS	3,982	NB	255	237	3.7%	n.d.	79%	n.d.				
23	Pro	WES	7,000	NB	n.d.	2350	0.9%	n.d.	n.d.	n.d.				
24	Retro	WGS	3,118	ICU children	412	342	7.2%	99%	98%	n.d.				
24	Retro	WGS	705	Infant deaths	412	342	8.7%	n.d.	90%	5.3%				
24	Retro	WGS	3,519	Parents	412	342	3.6%	n.d.	n.d.	n.d.				
24	Retro	WES	469,902	Adults	412	342	2.0%	n.d.	n.d.	n.d.				
25	Pro	WGS	120	ICU NB	412	342	4.2%	83%	100%	4.2%				
25	Pro	WGS	120	ICU NB	n.d.	2000	10.8%	93%	100%	9.9%				
26	Pro	WES	3,847	NB	165	405	1.8%	n.d.	98%	1.6%				

Summary

- 1. Rapid genome sequencing (rWGS) provides timely diagnosis for (almost) all genetic diseases
- 2. rWGS improves outcomes and lowers cost in NICUs and PICUs
- 3. rWGS has been implemented in <5% of those who need it
- 4. Screening (NBS) WGS is complementary to rWGS; together they provide a foundation for genome-informed healthcare; more evidence is needed to substantiate this
- 5. There are major technological challenges to NBSxWGS that require AI-based interpretation process with training from very large genome datasets
- 6. Democratization of rWGS and NBSxWGS requires engagement of stakeholders, parents, and physicians and upskilling of physicians

NEWBORN SCREENING Wins & Losses

Lynsey Chediak

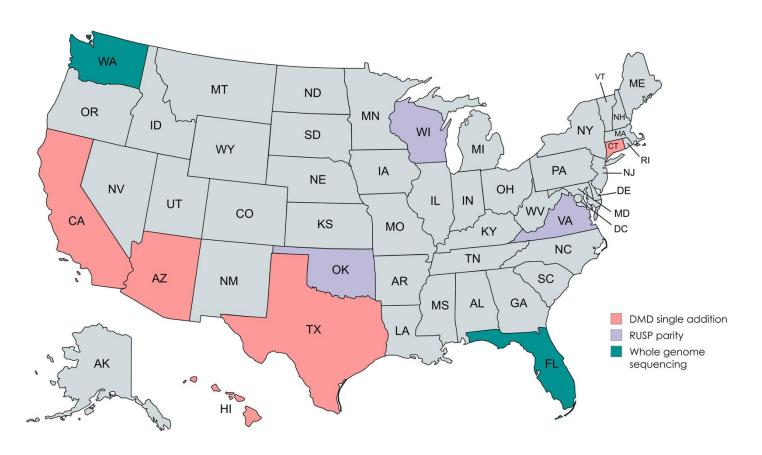
Associate Director, State Government Affairs, US West BioMarin

Topics For Discussion

- Reviewing what types of NBS-related legislation were introduced
- ACHDNC dissolution
- 2025 "Wins"

Expanding NBS Bill Introductions

Single Condition Addition – Duchenne Muscular Dystrophy (DMD)



RUSP Parity

NBS Funding Expansion (state specific)

State Legislators Demonstrated Interest in NBS Expansion

*Some states had multiple NBS bills covering more than one topic highlighted above **Not an exhaustive list

RUSP Parity and Federal Administration Changes

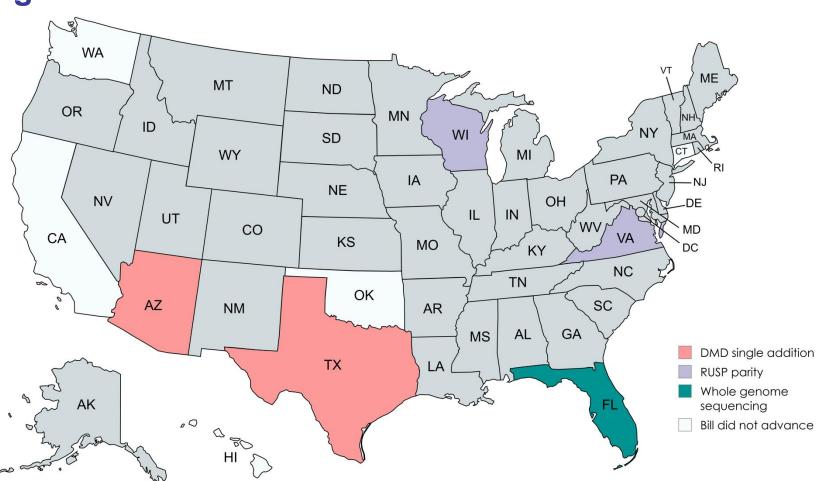
- HRSA Advisory Committee formed in 2003 called the Advisory Committee on Heritable Disorders in Newborns and Children (ACHDNC).
- The ACHDNC recommended its first panel of conditions called the Recommended Uniform Screening Panel (RUSP) in 2010.
- RUSP conditions are selected based on:
 - Identifiable conditions within 1-2 days of birth
 - Available, validated screening test
 - Newborn benefit from early detection and intervention
 - Available FDA-approved treatment
- 64 rare conditions on the RUSP.
- ACHDNC dissolved in April 2025 by the Department of Health and Human Services (HHS) as part of a broader restructuring effort.
- HHS Secretary Robert F Kennedy can technically add conditions to the RUSP (MLD and DMD) – federal register comment period ended Sept 15, 2025.

Highlights of 2025 Legislative Action

DMD Added

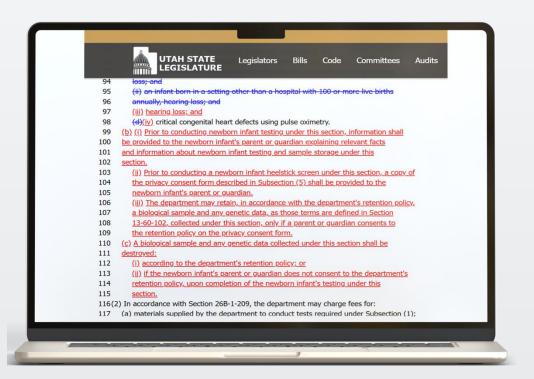
- Texas
- Arizona
- Florida

Lab Funding Added

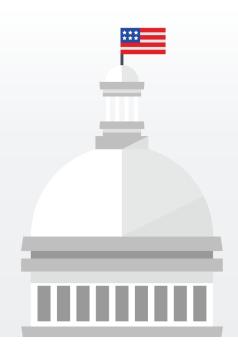

- Texas
- Arizona

RUSP Alignment

- Virginia
- Wisconsin (still in active session)


rWGS Expansion

Florida



Utah Law on Parental Consent for Newborn Genetic Data

- Utah Governor Spencer Cox signed HB 363 (Rep Pierucci) into law.
- Requires parental consent to retain a newborn's blood sample or genetic data after the initial newborn screening.

Legislative Outlook for 2026 Sessions

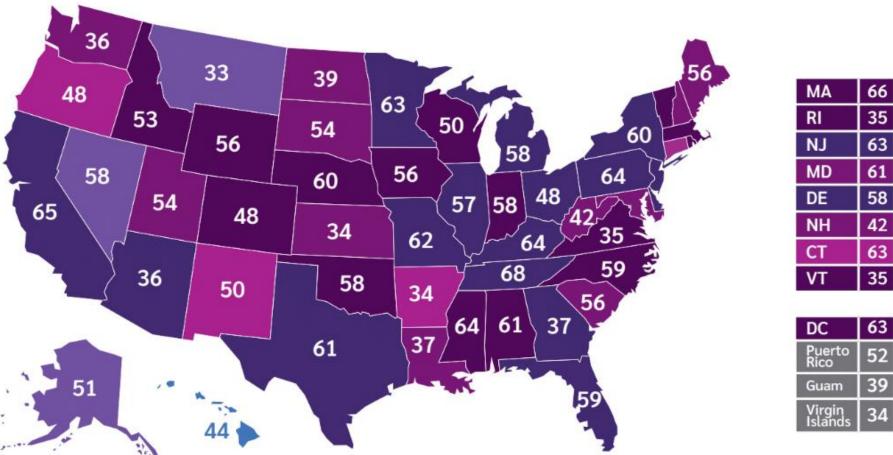
- Continued interest in adding DMD through legislative action.
- Further single condition addition bills.
- Continued need for state lab funding to grow as populations expand (state specific).
- RUSP uncertainty.

Questions

Lynsey Chediak

Associate Director, State Government Affairs, BioMarin Lynsey.Chediak@bmrn.com

NEWBORN SCREENING Looking Ahead


Erin Frey

Senior Director State Government Affairs

Ultragenyx

The State of Newborn Screening

	16	States screen for 36+ core conditions
66	15	States screen for 35 core conditions
35 63	11	States screen for 34 core conditions
58	4	States screen for 33 core conditions
63	3	States screen for 32 core conditions
35	1	States screen for 31 core conditions

Numbers in each state represent the total number of conditions screened for in each state.

Source: babysfirsttest.org Data as of September 4, 2025.

Understanding the Landscape of Newborn Screening

BACKGROUND

- Over 10,000 rare diseases affect 1 in 10 Americans, yet only 5% have approved treatments.
- Early diagnosis is critical—many rare disease therapies, including gene therapies, are most effective when administered before symptoms appear.
- NBS is a proven public health tool that enables early detection of treatable conditions using a simple heelprick blood test.
- NBS panels are determined at the state level, typically aligned with the RUSP, a federally curated list of conditions.
- Adding a condition to NBS involves a multi-year process of federal and state reviews, followed by lab validation to ensure accuracy and reliability, typically taking 5-10 years after a treatment is approved.

CURRENT CHALLENGES

- The termination of the federal ACHDNC has disrupted the RUSP nomination and approval process.
- Conditions like MLD and DMD were the last to be reviewed by ACHDNC and are awaiting US DHHS Secretary's decision whether to add to the RUSP, but how conditions will be added is uncertain.
- Many treatable, screenable conditions remain unnominated due to the complexity and cost of the process.
- State NBS labs are under-resourced, facing staffing and infrastructure challenges that hinder timely expansion.
- Without proactive state action, babies with treatable conditions may go undiagnosed, missing critical windows for intervention.

In the absence of ACHDNC, what are things that can be considered by states and public health labs to continue to support the rare community?

Priority #1: Keep NBS Top of Mind

Recommended Actions for

State Legislators

- Advance legislation to authorize condition additions and appropriate funding—this positions the state to act swiftly when federal processes resume.
- Establish or expand dedicated NBS funds and consider adjusting screening fees to support lab capacity and sustainability.
- Prioritize conditions with available treatments (and/or available clinical trials) and existing screening technology.
- Enable labs to maximize use of existing technology many panels already detect more conditions than are reported because labs cannot report results unless officially added to the state panel.
- Assess NBS Advisory Committees' review processes to seek efficiencies and reduce time.
- Consider state Rare Disease Advisory Council support, advice and coordination.

Recommended Actions for Public Health Lab Leaders

- Lab leaders' insights are essential—share operational challenges and recommendations to inform policy and funding decisions.
- Advocate for flexible funding mechanisms, such as screening fee adjustments, to cover direct and indirect costs (i.e. staffing, IT, equipment, facilities, validation).
- Recognize that federal delays may persist—states must act independently to ensure babies are not left behind.
- Even with RUSP alignment laws, state-level review and validation remain necessary for each condition—early planning is key.
- Maintain a list of conditions that have 1) approved treatments and 2) a NBS assay and add these conditions to state screening panels as appropriate.
- Consider state Rare Disease Advisory Council support, advice and coordination

Ecosystem Considerations for State NBS

PROS

- Conversation about NBS will continue.
- Learnings could inform federal level outcomes.
- NBS is a bipartisan issue.
- Mobilizes legislators to act on a proven public health program.
- Legislators are compelled by adding multiple conditions (not any one company's self interest).
- Prevents diagnostic odyssey and improves health outcomes.

NEUTRAL

- This could be a multi-year effort.
- The effort to reinstate or reinvent the ACHDNC will be happening simultaneously.
- Each state, if they engage, will have their own unique path.
- This effort is horizon scanning.
- Identifying milestones that would trigger funding will support PHLs.

CONS

- This is a complex course change from RUSP Parity legislation.
- NBS Advisory Committees will still review conditions on their timelines with their unique processes.
 - All NBS Ad Comms require evidence, NBS program readiness (physician ed & follow up plans), treatment availability, and a very specific and sensitive assay that has VERY low False Positives and zero False Negatives.
- PHLs tend to perceive legislation as pressure.

Polling Question

Are there stories from your community that could help educate legislators or public health leaders about the importance of newborn screening?

NEWBORN SCREENING ADVOCACY

Kari Lato

Sr. Director, Policy & Advocacy
Rx4good

Strategic Planning for Legislation Introduction

What it is

- State-level law requiring NBS programs to add a specific condition.
- Creates a legal mandate with a deadline.
- Speeds up access to life-saving screening.
- Introduced as a bill, goes through hearings and votes, signed by governor.
- Has been used to add conditions like DMD disease.

Why it's important

- Saves lives by ensuring earlier diagnosis and treatment.
- Prevents diagnostic odyssey and improves health outcomes.
- Mobilizes legislators to act on a proven public health intervention.
- Strengthens the state's public health infrastructure.

What we will do

- Identify states where legislation has a chance.
- Consider political climate, budget implications, and timing in the legislative session.
- Find a legislative champion and draft bill.
- Secure Senate and House cosponsors to ensure the bill moves in both chambers and has bipartisan backing.
- Introduce the bill at the optimal time in the session.
- Ask for your help once the bill is introduced!

How You Can Help When Legislation is Introduced

There will be opportunities to:

- Testify in person or submit letters of support.
- Meet with legislators (1:1, small groups, hill days).
- Call your legislators.
- Lend your logo to group letters.
- Use social media to educate and bring awareness to the issue – make sure to tag legislators and include relevant hashtags.
- Mobilize your constituents to take action.
- Identify patients/families willing to share their stories (with legislators, media, public via social/blog).
- Identify HCPs / experts to participate in meetings.

Proud to be with @WiRareAlliance to advocate for #RareDisease families at WI Capitol. #NewbornScreening can save lives (SB145/AB 206) Thank you for meeting with us @SenatorKapenga @RepCindiDuchow @RepDittrich @SpeakerVos

Polling Question

After attending this webinar, how would you rate your understanding of newborn screening compared to before?

- Significantly improved I feel much more informed and confident in my understanding.
- Somewhat improved I have a better grasp but still have some questions.
- About the same My understanding hasn't changed much.
- Still unclear I need more information to fully understand.

THANK YOU JOIN THE COALITION TODAY!

Kari Lato kari.lato@rx4good.com www.rareandready.org

